Web Services & REST

Jukka K. Nurminen
31.1.2012

Based partly on slides by Tancred Lindholm, Sasu Tarkoma
and Pekka Nikander

Assignment

| hope everybody has sent an assighment
signup message to the course mailing list

Course assistant reception time reservation
system timesplayground.cs.hut.fi/kaiku

2 & 3 assignments today
— Virtual machine for each pair coming soon

General guidelines

Last Time

HTML

XML and related languages
— XML

— SGML

— DTD

— XML Schema

— XSLT

JSON
EXI
Android lecture

Today

Communicating between different services
We use the presentations we discussed last week

OW C
OW C

OW C

o we specify what needs to be done?
o we find the services?
o we know how to call the services?

Main approaches

— Web Services and a set of ws-* standards
— REST

Application of these concepts to some services

A Basic Web Service

Computer A
Language: C++
0S: W2000

Computer B
Language: Java
OS: Linux

Independent of
language, OS, network
protocols

Web Services

Let's make machine-callable services using
web principles

A central role is played by the description of
the service's interface

Implementation less important, avoid
implementation-specifics

Business aspects considered

— Use across organizations
— Multiple competing implementations

Driving forces |

* Universal data access / representation

— Independent of OS, programming language, network
protocol, ...
 Move from human-centric to application-centric
web

— Applications converse with each other and use
machine-related information published on the web

— Application-areas: package tracking, card verification,
shopping bots, single sign-on, calendar, email, ...

Driving forces |

* Making Web a programming interface
— We have had servlets, CGIl, CORBA for years

— |ldea is to standardise languages and protocols to have
better integration

* Make service composition possible
— Faster project throughput
— Better utilization of global resources
— Cope with heterogeneity

e Deferred binding
— Discovery / broker, interpret, compose, execute
— Many levels of deference

Additional properties

* A web service should be self-describing
— Interface is published with the implementation
— Minimum interface is human readable description

— The interface can also be written in a common XML
grammar (WSDL)

A web-service should be discoverable

— The web service is published
— It has a life cycle
— Interested parties can find it

 Not mandatory but desirable properties

Standardization

e W3C Web Services Activity

— XML Protocol Working Group
* SOAP

— Web Services Addressing Working Group
* How to address WS entities

— Web Services Choreography Working Group

* Processes involving several WS, coordination

— Web Services Description Working Group
* WSDL

* OASIS

— UDDI (Universal Description, Discovery and Integration)

 WS-I (Web Service Interoperability Org.)
— Best Practices on how to use WS* standards

Web Service Architecture

* The three major roles in web services

— Service provider
* Provider of the WS

— Service Requestor
e Any consumer / client

— Service Registry
* logically centralized directory of services

* A protocol stack is needed to support these
roles

WS Protocol Stack

‘ Discovery: UDDI I

‘ Description: WSDL I
‘ XML Messaging: SOAP, XML-RPC, XML I

‘ Transport: HTTP, FTP, BEEP, SMTP, JMS I

12

Web Services Protocol Stack

Message Exchange

— Responsible for transporting messages

— HTTP, BEEP
XML Messaging

— Responsible for encoding messages in common XML format

— XML-RPC, SOAP

Service Description

— Responsible for describing an interface to a specific web service
— WSDL

Service discovery

— Responsible for service discovery and search
— UDDI

Main components today

XML data representation
— XML Schema Definitions (xsd) for types
— XML Namespaces for unambiguity

SOAP

— Basic transport (XML messaging)
— Sync / async communication and RPC

WSDL
— Description of (SOAP) services

UDDI

— Universal Description Discovery and Integration
— Service registry

Example WS laverin

Management services:Admin, UDDI, depl., auditing

Service container l ‘ J2EE integration l

Serialization / deserialization (Java to XML mapping) l
SOAP processor l

XML processor l
Transport: HTTP(S), SMTP, JMS, .. l

15

XML Messaging

e Several alternatives for XML messaging
— SOAP
— XML Remote Procedure calls (XML-RPC)

— Regular XML transported over HTTP

XML-RPC

SOAP

HTTP POST/GET

16

SOAP Version 1.2

protocol for exchanging structured (XML) and typed
information between peers

A SOAP message is formally specified as an XML Infoset
("abstract XML")

Infosets can have different on-the-wire
representations, one common example of which is as

an XML 1.0 document.
A stateless, one-way message exchange paradigm

Applications can create more complex interaction
patterns
— request/response, request/multiple responses

SOAP Structure

Transport protocol

 Each SOAP message will

MIME header
have:

— An Envelope

SOAP HEADER

— A Header (optional)
— A Body

— The Body may contain a EAULT
Fault element

SOAP Request

POST /InStock HTTP/1.1

Host: www.example.org

Content-Type: application/socap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"7?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/socap-envelope"

soap:encodingStyle="http://www.w3.0rg/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPrice>
<m:StockName>IBM</m:StockName> The actual call
</m:GetStockPrice>
</soap:Body>
</soap:Envelope>

SOAP Response

HTTP/1.1 200 OK
Content-Type: application/socap+xml; charset=utf-8

Content-Length: nnn

<?xml version="1.0"7?>

<soap:Envelope
xmlns:soap="http://www.w3.0rg/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.0rg/2001/12/socap-encoding">

<soap:Body xmlns:m="http://www.example.org/stock">
<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>
</m:GetStockPriceResponse>

The actual reply

</soap:Body>

</soap:Envelope>

About invocation mechanisms

* WS does not define invocation/execution
mechanism

e Alternatives
— Microsoft .NET framework

— Java-based framework
* JAVA API for WSDL (JWSDL)
* JAX-RPC
 Java APl for XML registries (JAXR)
* Apache Axis

What is WSDL?

WSDL: Web Service Description Language
An XML language used to describe and locate web
services

— location of web service

— methods that are available

— data type information and XML messages

Commonly used to describe SOAP-based services

W3C standard (work in progress)
— Initial input: WSDL 1.1 as W3C Note

— Current version 2.0 (Recommendation)
— Some differences between 1.1 and 2.0

WSDL Overview

<definitions>: ROOT WSDL element

-_—-——T T T - .
o _y
- \\
-

P i~
I »N
/ <types>: The data types that are used \
!
N <interface>: The supported operations /
7|

S -~
\\ ”

<binding>: The binding to concrete protocols I
<service>: Reference to actual location I

23

A WSDL Document

A WSDL document contains two parts
Abstract part

— Interfaces, types

Concrete part
— Binding to concrete protocol and encoding

May be published separately
— Interfaces agreed between many companies

— Each company published their own implementation in
UDDI and import the abstract interface.

Example

<types>
<xsd:schema
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" ...>
<xsd:element name="TradePriceRequest" type="xsd:string"/>
<xsd:element name="TradePrice" type="xsd:float"/>
</types>

<interface name="StockQuotePortType" >
<operation name="GetLastTradePrice"
pattern="http://www.w3.org/ns/wsdl/in-out ">
<input message="In" element="TradePriceRequest" />
<output message="0ut" element="TradePrice "/>
</operation>
</interface>

WSDL Document Elements (v. 2.0)

<types> - data type definitions
<interface> - A set of abstract operations

<binding> - Concrete protocol and data format
specifications for the operations and

messages defined by a particular interface.
Endpoint type.

<endpoint> - An address for binding. Endpoint
Instance.

<service> - A set of endpoints

Types

* <types> define data types used in interface
declaration

* For platform neutrality, WSDL uses XML Schema
syntax to define data

— XML Schema must be supported by any vendor of
WSDL conformant products
— Other kinds of type definitions also possible
* Possible interoperability issues
— If the service uses only XML Schema built-in simple

types, such as strings and integers, the types element
is not required

WSDL Interfaces

The <interface> element is the most
important WSDL element

The operations that can be performed

An <endpoint> defines the connection point
to a web service, an instance of <interface>

It can be compared to a function library (or a
module, or a class) in a programming language

Bindings & Services

<wsdl:binding name="StockQuoteSoapBinding" interface="tns:StockQuotelnterface"
type="http://www.w3.org/ns/wsdl/soap"
wsoap:version="1.1"
wsoap:protocol="http://www.w3.0rg/2006/01/soap11/bindings/HTTP/">
<wsdl:operation ref="tns:GetLastTradePrice"

wsoap:action="http://example.com/GetLastTradePrice"/> .
What operation is

</wsdl:binding> executed

<wsdl:service name="StockQuoteService" interface="tns:StockQuotelnterface">
<wsdl:documentation>My first service</wsdl:documentation>
<wsdl:endpoint name="StockQuoteEndPoint" binding="tns:StockQuoteBinding"
address="http://example.com/endpoint/stockquote"/>

</wsdl:service>

Where the service
can be found

Putting it together

[Type] (Type w
((Operation 1 [’

Abstract Endpoint Type
(no transport or encoding) [Interface W
Concrete Endpoint Type T
(with transport and encoding) (Binding 1 [’
Endpoint Instance .
(with network address) Endpoint
Service ; l
(related endpoint instances) [Service 1 [’

Original source http://msdn.microsoft.com/

Uses of WSDL documents

* Description of service interfaces
— Compile-time
* Developer uses WSDL before service deployment
— Run-time

* Client downloads WSDL description and uses the info it
provides to execute the service

 As aside-effect

— Developers can use WSDL to speed up the
development of code

— WSDL{)Java code
— Java interfaces () WSDL

How it could work

1. A standard body creates a WSDL interface
definition

2. A service programmer implements a service
according to the WSDL definition

3. A client programmer implements a client
according to the WSDL definition

4. A service provider deploys the service and
publishes a WSDL implementation definition, and
registers it into UDDI

5. A client program pulls WSDL from UDDI,
checks conformance, and uses SOAP for access

2. Creating server application

e Pull WSDL definition from somewhere (UDDI)
— Only use high-level WSDL, no bindings yet

* Generate platform specific skeleton code
using automated tools

* Write the actual program code

3. Creating client application

e Pull WSDL definition from somewhere (UDDI)
— Use only high-level WSDL, no bindings yet

* Generate platform specific stub code using
automated tools

* Write the actual program code

How it eetd seems to work

1. A-standard-body-createsa-WSDlinterface-definibon a
company specifies, implements, and deploys a web
interface

Q_A‘EG%G‘WWW WEDL dafini

3. A client programmer implements a client accerdirngte

the \WSDlL-definiten with the textual specification and tests
it with the live web site

2. Creating server application
but it may not happen like this

Pull WSDL definition from somewhere (UDDI)
— Only use high-level WSDL, no bindings yet

Generate platform specific skeleton code using automated
tools

Write the actual program code

In many cases the server application already
exists and the question is how to open an
interface to the server application

Top-down vs. bottom-up, waterfall vs. agile

36

3. Creating client application
why it may not happen like this

Pull WSDL definition from somewhere (UDDI)
— Use only high-level WSDL, no bindings yet
* Generate platform specific stub code using automated tools

* Write the actual program code

* The generated stub code may not be that useful

— Understanding machine generated code can be
harder than human written code

— Nice applications need developer creativity e.g. for
user experience

e Effort of WSDL & UDDI definition vs. effort of
writing client interface

37

WS Criticism

Quite heavy, lots of specs

More suited for large well-structured
organizations, rather than fast innovation?

Is there anything new here?
Are all abstraction layers really needed?

UDDI

* UDDI stands for Universal Description,
Discovery and Integration

« XML-based standard for describing,
publishing, and finding Web services

* For each service metadata + pointer to its
WSDL description

REST

REST

* REpresentational State Transfer
* [n 2000 by Roy Fielding in his doctoral
dissertation

— Roy was heavily involved in the specification of
HTTP 1.0 and HTTP 1.1

HTTP

GET /path/file.html HTTP/1.1
Host: www.hostl.com:80

HTTP/1.1 200 OK

Date: Fri, 31 Dec 1999 23:59:59

GMTContent-Type: text/
plainTransfer-Encoding: chunked

la; i1gnore-stuff-
hereabcdefghijklmnopgrstuvwxyz ..

REST request

Actions specified with verbs (GET, PUT,

POST, DELETE) Typically uses HTTP

GET /v1/posts/recent HTTP/1.1
Host: api.del.ic1io.us

Authorization: BRasic
AXN1lcmbhbWUocGFzc3dvemQ=

Relies on services of web protocols. E.g.
authentication

REST reply

<?xml version='1.0' standalone="'yes'?>
<posts tag="" user="username">

<post href="http://www.foo.com/" description="foo"
extended=""

hash="14d59bdc067e3c1f8f792f51010ae5ac" tag="foo"
time="2006-10-29T02:56:127" />

<post href="http://amphibians.com/"
description="Amphibian Mania"

extended="" hash="688b7b2f2241bc54a0b267b69f438805"
tag="frogs toads"

time="2006-10-28T02:55:532" />

</posts>
This is just regular XML document

but is also could be JSON or something else

Key Aspects of REST

Unique IDs for all “things”

Links tie “things” together

Standard methods for manipulation
Resources with multiple representations
Stateless communication

URIs for all things

Individual items

* http://example.
* http://example.

2007/10/776654

Collections

* http://example.
* http://example.

color=green

com/customers/1234

com/orders/

com/orders/2007/11
com/products?

ltems linked together

<order self='http://example.com/
customers/1234' >

<amount>23</amount>

<product ref='http://example.com/
products/4554"' />

<customer ref='http://example.com/
customers/1234' />

</order>

Standard methods

GET (Query the state)

POST (Modify)

PUT (Create a resource)

DELETE (Delete a resource)

Other verbs are also possible

The meanings of verbs varies between apps

The match well with the CRUD approach (Create,
Read, Update, Delete)

— E.g. SQL

Collection URI
e.g. http://example.com/resources/

GET

— List the URIs and perhaps other details of the
collection's members.

PUT
— Replace the entire collection with another collection.

POST

— Create a new entry in the collection. The new entry's
URL is assigned automatically and is usually returned
by the operation.

DELETE
— Delete the entire collection.

Element URI,

such as http://example.com/resources/142

GET

— Retrieve a representation of the addressed member of the
collection, expressed in an appropriate Internet media

type.
PUT

— Replace the addressed member of the collection, or if it
doesn't exist, create it.

POST

— Treat the addressed member as a collection in its own
right and create a new entry in it.

DELETE
— Delete the addressed member of the collection

Resources with multiple
representations
GET /customers/1234 HTTP/1.1

Host: example.com

Accept: application/vhd.mycompany.customer
+xml

GET /customers/1234 HTTP/1.1
Host: example.com
Accept: text/x-vcard

Stateless Communication

e The server does not maintain information
about a particular client

 Clients need to take care of this

— E.g. with normal web mechanisms

e Sessions are not tied to a specific server
— Scalability, load balancing etc.

REST styles

e http://flickr.com/photos/tags/penguin
— The “proper” way

e http://api.flickr.com/services/rest/?
method=flickr.photos.search&tags=penguin

— The “function call” way

— Falls in the middle of REST style and remote
process call style

— Not recommended by purists

REST Structure

Transport protocol (HTTP)
VERB (GET, PUT, ...)

URI (.../example/item/
1234)

+

All the mechanisms of
HTTP and WEB are
available (security, load
balancing, ...)

Transport protocol

MIME header

SOAP HEADER

FAULT

This is SOAP structure for comparison

Web Application Description
Language (WADL)

A bit similar to WSDL

 Allows services to be described in a machine
processable way

— Would allow automatic stub generation

* Major web services seem to rely on human
readable documentation of the interfaces
rather than on this kind of automated
approaches

REST vs. SOAP

* Relies other web * Has its own
technologies (e.g. HTTP) mechanisms WS*
— E.g. security * Function call ideology
* Verb +term focus « Standard (set of)

* Architectural style

REST is winning

* 85% clients prefer Amazon RESTful API (http://
www.oreillynet.com/pub/wlg/3005)

* |In 2007 Google announced it would no longer
support its SOAP/WSDL API

2004

I | I
2005

I I I
2006

I I I
2007

2004 - present

e soap apl 55 e rest apl 37
100

~ Vao

60

(/YN TN a0

20

0
1 [1 | 1 1 1 | 1 1 [
2008 2009 2010

Source: Google Insights for Search.

And REST won?

Simon Says...
Simon Phipps

The End Of The Road For
Web Services

A decade of corporate politics by the big software companies
is finally over as WS-I shuts up shop and gets folded in to
OASIS.

Published 07:00, 11 November 10 http://blogs.computerworlduk.com/simon-
says/2010/11/the-end-of-the-road-for-web-
services/index.htm

 But the legacy enterprise apps will stay for a long time
* And some people are not really convinced what this means

RESTful web services

* Implemented using HTTP and the principles of
REST

* A collection of resources, with three defined

aspects:
— the base URI for the web service, such as http://
example.com/resources/

— the Internet media type of the data supported by the
web service, typically JSON or XML

— the set of operations supported by the web service
using HTTP methods (e.g., POST, GET, PUT or DELETE).

Summary

e \Web Services: let's make machine-callable
services using web principles

— SOAP
— WSDL
— UDDI
— Web Services Stack & a set of WS-* standards

 REST

— Everything is a URI
— Actions through verbs (GET, POST, PUT, DELETE, ...)
— Relies on on HTTP and web technologies

Questions / discussion

